l1 regularization (1) 썸네일형 리스트형 L1, L2 Regularization L1, L2 regularization 은 모델의 overfitting 을 완화하기 위해, 모델의 복잡도에 부여하는 패널티다. 모델의 bias, variance 관점에서는 variance 를 낮추기 위한 방법이다. L1 regularization 은 L2 에 비해 weight 가 0으로 학습될 가능성이 높다. 이런 특징 때문에 L1 regularization 은 feature selection 을 위해 사용되기도 한다. Weight space 관점에서 L1 regularization 를 사용할 때 weight 가 0이 될 가능성이 높은 이유를 살펴볼 수 있다. 그림을 그리기 위해 weight 를 2차원 vector 로 가정해보자. 최적화를 할 때 regularization term 이 $t$ 보다 작을 .. 이전 1 다음