feed-forward nerual network (1) 썸네일형 리스트형 직관적인 Universal Approximation Theorem 증명 Bias-variance trade-off 포스트에서 언급된 bias loss 를 줄이기 위해서는 feed-forward neural network 를 사용해볼 수 있다. 이런 feed-forward neural network 의 학습능력의 바탕에는 universal approximation theorem 이 있다. Universal approximation theorem 의 내용은 아래와 같다. 임의의 개수의 neuron 을 포함하고, activation function 이 sigmoid 이면서, 1 hidden layer 를 가진 feed-forward neural network 는 적절한 weights 만 주어진다면 어떤 함수든 근사화 할 수 있다. 컴퓨터공학도에게 위의 내용을 엄밀하게 증명하는 건.. 이전 1 다음